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Challenges in Cell Therapy manufacturing

High complexity:

The productivity and functional identity of cell products are
sensitive to cell culture conditions.
Improper cultivation can not only hinder yield, but can result in
heterogeneously differentiated cell populations.

Limited data:

1 Lengthy analytical testing time for complex cell therapeutics
2 More and more personalized cell therapeutics

High variability: seed cells can be extracted and isolated from
individual patients and donors, which leads to high variability
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Limitation of State-of-the-art Methods

Existing mechanistic models often ignore various sources of process
stochasticity:

batch-to-batch variation (Mockus et al., 2015)

intracellular production fluctuations (Vasdekis et al., 2015)

Raw material variability (Dickens et al., 2018).

For classical control and reinforcement learning control

classical control strategies are often derived from deterministic
mechanistic models and overlook bioprocess stochastic uncertainty &
model uncertainty

RL approaches often do not have good way to incorporate enough
prior knowledge on bioprocessing mechanisms;
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Hybrid-RL with Probabilistic Knowledge Graph

Driven by the critical challenges, we propose a data-driven stochastic
optimization framework named “hybrid-RL”.

KG network hybrid model is probabilistic and mechanism-based and
created to characterize the spatial-temporal causal interdependencies
between critical process parameters (CPPs) and critical quality attributes
(CQAs).

Bayesian inference is used to derive a posterior distribution of the hybrid
model.

Hybrid model-based Bayesian RL (called “hybrid-RL”) is developed to
efficiently guide optimal, robust, and interpretable dynamic decision making.

The proposed Hybrid-RL framework demonstrates promising performance for cell
therapy manufacturing process optimization.
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Problem Statement and Bayesian RL

We model the cell therapy manufacturing process as a finite-horizon Markov decision process
(MDP) specified by (S,A,H, r , p).

The system start at an initial state sss1 drawn from p1(sss1). At any time t,

the agent observes the state ssst ∈ S and takes an action aaat ∈ A from a policy πt(ssst |aaat).

receives a reward rt(ssst ,aaat) ∈ R.

Thus, the probabilistic model of the process trajectory τττ = (sss1,aaa1, . . . , sssH ,aaaH , sssH+1), i.e.,

p(τττ |θθθ) = p(sss1)
H∑
t=1

p(ssst+1|ssst ,aaat ;θθθt),

Given θθθ, the performance of the policy π is evaluated via the expected accumulated reward,

J (π;θθθ) ≡ Eτττ

[
H+1∑
t=1

rt(ssst ,aaat)

∣∣∣∣∣πππ,θθθ
]
, (1)
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Problem Statement (Cont’d)
Latent state: Let zzz t denote the latent state variables. Thus, at any time step t,

We have observable and unobservable state ssst = (xxx t ,zzz t).

We have the likelihood of the partially observed trajectory
τττ x ≡ (xxx1,aaa1, . . . ,xxxH ,aaaH ,xxxH+1) is p(τττ x |θθθ) =

∫
· · ·
∫
p(τττ |θθθ)dzzz1 · · · dzzzH+1.

Model uncertainty is quantified by a posterior distribution obtained by applying Bayesian rule,

p(θθθ|D) ∝ p(θθθ)P(D|θθθ) = p(θθθ)
m∏
i=1

p
(
τττ

(i)
x |θθθ

)
(2)

where the prior p(θθθ) can incorporate the mechanism knowledge on the model parameters.

Objective: the optimization problem of KG hybrid model-based Bayesian RL is formulated by

π? = arg max
π∈P
J (π) (3)

with P representing the feasible set of decision policies and the optimization objective

J (π) ≡ Eθθθ∼p(θθθ|D) [J (π;θθθ)]

with (1) inner expectation in J(π;θθθ) = Eτττ [
∑H+1

t=1 rt(ssst ,aaat)|πππ,θθθ] accounting for inherent
stochasticity; and (2) outer expectation accounting for model uncertainty.
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Bioprocess Hybrid Modeling

Given the existing ODE-based mechanistic model dsss/dt = fff (sss,aaa;βββ) , we
construct the hybrid model for state transition,

xxx t+1 = xxx t + ∆t · fff x(xxx t ,zzz t ,aaat ;βββt) + eeext+1, (4)

zzz t+1 = zzz t + ∆t · fff z(xxx t ,zzz t ,aaat ;βββt) + eeezt+1, (5)

where the residual terms eeext+1 ∼ N (0,V x
t+1) and eeezt+1 ∼ N (0,V z

t+1).

Let g(ssst ,aaat ;βββt) ≡ ssst + ∆t · fff (ssst ,aaat ;βββt). At any time step t ∈ H, we have

ssst+1|ssst ,aaat = g(ssst ,aaat ;βββt) + eeet+1 ∼ N
(
g(ssst ,aaat ;βββt),Vt+1

)
(6)

where ssst = (xxx t ,zzz t), eeet+1 = (eeext+1,eee
z
t+1), and Vt+1 is diagonal covariance

matrix with diagonal entries from V x
t+1 and V z

t+1.

Random mechanistic coefficients βββt account for batch-to-batch variation.

θθθt =
(
µµµβt , vec(Σβ

t ), vec(V x
t+1), vec(V z

t+1)
)>
.

H. Zheng, W. Xie (POMS 2022) KG-ML for Cell Therapy Manufacturing 7 / 18



Bioprocess Hybrid Modeling (Cont’d)

A Second View of Hybrid-RL: Policy-Augmented Knowledge Graph (KG)
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Bayesian Inference

Inference: ABC-SMC sampling procedure for generating posterior samples from
p(θθθ|D) (derived from Toni et al. (2009); Lenormand et al. (2013); Del Moral
et al. (2006)).
Main Idea: Given the observed trajectory τττ x = (xxx1,aaa1, . . . ,xxxH ,aaaH ,xxxH+1).

p(θθθ|τττ x) ∝ p(τττ x |θθθ)p(θθθ) (7)

The algorithm samples θθθ and τττ?x from the joint posterior:

pδ(θθθ, τττ?x |τττ) =
p(θθθ)p(τττ x |θθθ)1δ[τττ?x ]∫ ∫

p(θθθ)p(τττ?x |θθθ)1δ[τττ?x ]dτττ?xdθθθ
(8)

where 1δ[τττ?x ] = 1δ[d(τττ x , τττ
?
x ) ≤ δ] is one if d(τττ x , τττ

?
x ) ≤ δ an zero else.

When δ is small, pδ(θθθ|τττ x) =
∫
pδ(θθθ, τττ?x |τττ)dτττ?x is a good approximation to p(θθθ|τττ x)
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KG Hybrid Model-based Bayesian RL

For each t ∈ H, we define the state value function V π
t (sss) : S → R and action

value function Qπ
t : S ×A → R as

V π
t (sss) = Ep(θθθ|D) Ep(ssst+1|ssst ,πt(ssst);θθθt)

[
H∑
`=t

r`(sss`, π`(sss`))

∣∣∣∣∣ ssst = sss

]

Qπ
t (sss,aaa) = E

[
H∑
`=t

r`(sss`, π`(sss`))

∣∣∣∣∣ ssst = sss,aaat = aaa

]
= rt(sss,aaa) + E

[
V π
t+1(ssst+1)

∣∣ ssst = sss,aaat = aaa
]

(9)

The Bellman optimality equation (Sutton and Barto, 2018, Chapter 3.6)

V ?
t (sss) = max

aaa∈A
rt(sss,aaa) + E

[
V ?
t+1(ssst+1)

∣∣ ssst = sss,aaat = aaa
]

= max
aaa∈A

Q?
t (sss,aaa). (10)

The optimal greedy policy (Puterman, 2014) with

π?t (sss) ≡ argmax
aaa∈A

Q?
t (sss,aaa), for any sss ∈ S. (11)
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Bayesian Sparse Sampling (Kearns et al., 2002; Wang et al., 2005)

Input: state ssst ; scenario numbers B and J for estimating Ep(θθθ|D) Ep(ssst+1|ssst ,π(ssst );θθθt )[·]; p̂(θθθ|D) from SMC-ABC.

Output: Estimated optimal Q-function Q̂(sss, aaa)
Function Qfun(t, ssst , aaat ):

for b = 1, 2 . . . , B do
(A1) Generate a posterior sample of model parameters, θθθb ∼ p̂(θθθt |D).
for j = 1, . . . , J do

(A2) Sample from state transition distribution, sss
(b,j)
t+1 ∼ p(ssst+1|ssst , aaat ;θθθt,b)

(A3) Vt+1

(
sss

(b,j)
t+1

)
= Vfun

(
t + 1, sss

(b,j)
t+1

)
(A4) Q̂t (ssst , aaat ) = rt (ssst , aaat ) + 1

BJ

∑B
b=1

∑J
j=1 Vt+1

(
sss

(b,j)
t+1

)
.

return Q̂t (ssst , aaat ).

Function Vfun(t, ssst ):
if t = H + 1 then

return rH+1(sssH+1);

for aaat ∈ A do
for b = 1, 2 . . . , B do

(B1) Generate a posterior sample of model parameters θθθb ∼ p̂(θθθt |D)
for j = 1, . . . , J do

(B2) Sample from state transition sss
(b,j)
t+1 ∼ p(ssst+1|ssst , aaat ;θθθt,b)

(B3) Vt+1

(
sss

(b,j)
t+1

)
= Vfun

(
t + 1, sss

(b,j)
t+1

)
(B4) Estimate Q̂t (ssst , aaat ) = rt (ssst , aaat ) + 1

BJ

∑B
b=1

∑J
j=1 Vt+1

(
sss

(b,j)
t+1

)
(B5) V̂t (ssst ) = maxaaat∈A Q̂t (ssst , aaat ) as in (10)
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Cell Therapy Manufacturing Case Study
Mechanistic Model: Glen et al. (2018) developed an ODE-based mechanistic model describing
the dynamics of an unidentified autocrine growth inhibitor accumulation and its impact on the
erythroblast cell production process. We extend this model to a two phases: growth and
stationary phases with index p = 1, 2.

dρ

dt
= rgp ρ

(
1−

(
1 + e(ksp(kcp−I ))

)−1
)
, (12)

dI

dt
=

dρ

dt
− rdp I , (13)

ρt and It represent the cell density and the inhibitor concentration at t.

The kinetic coefficients rgp , ks
p , kc

p and rdp denote the cell growth rate, inhibitor sensitivity,
inhibitor threshold, and inhibitor decay. The phase transition occurs at T? = 18 hour.

Simulator: based on (12)-(13), we develop a simulator by including various source of uncertainty

dρ = rgp ρ

(
1−

(
1 + e(ksp(kcp−I ))

)−1
)

dt + σndW (14)

dI = dρ− rdp Idt + σndW (15)

with (1) random initial values ρ1 ∼ N (µρ, σ2
ρ) and I1 = 0, (2) batch-to-batch variation

rgp ∼ N
(
µgp , (σ

g
p )2
)

with p = 1, 2, and measurement error ρt ← ρt + em with em ∼ N (0, σ2
m).
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Prediction Error (MAE) of Cell Density

Assessment of the long-term prediction performance (mean absolute error) of the KG hybrid
model and the ODE mechanistic model fitted by LS method (LS-ODE).

Both models were fitted by “real-world” historical trajectories with the size m = 3, 6, 20. We
evaluate performance based on r = 30 macro-replications.

Noise Level h
(hrs)

Hybrid LS-ODE

b2b noise m = 3 m = 6 m = 20 m = 3 m = 6 m = 20

high σn = 0.01
3

18
30

0.12 ± 0.05
0.60 ± 0.17
0.59 ± 0.16

0.09 ± 0.03
0.48 ± 0.10
0.40 ± 0.11

0.06 ± 0.02
0.26 ± 0.07
0.22 ± 0.06

0.41 ± 0.19
0.74 ± 0.15
0.65 ± 0.24

0.59 ± 0.30
0.57 ± 0.25
0.70 ± 0.36

0.44 ± 0.22
0.49 ± 0.23
0.84 ± 0.65

high σn = 0.03
3

18
30

0.21 ± 0.05
1.07 ± 0.22
1.11 ± 0.24

0.14 ± 0.03
0.82 ± 0.15
0.74 ± 0.16

0.08 ± 0.03
0.48 ± 0.12
0.44 ± 0.12

0.37 ± 0.20
1.11 ± 0.28
1.57 ± 0.76

0.40 ± 0.19
0.93 ± 0.31
1.09 ± 0.41

0.36 ± 0.23
0.83 ± 0.34
0.93 ± 0.45

low σn = 0.01
3

18
30

0.10 ± 0.03
0.48 ± 0.12
0.47 ± 0.11

0.07 ± 0.02
0.38 ± 0.09
0.30 ± 0.08

0.04 ± 0.01
0.27 ± 0.06
0.16 ± 0.04

0.38 ± 0.23
0.43 ± 0.13
0.45 ± 0.11

0.54 ± 0.26
0.35 ± 0.12
0.52 ± 0.23

0.38 ± 0.20
0.28 ± 0.11
0.32 ± 0.15

low σn = 0.03
3

18
30

0.18 ± 0.06
1.00 ± 0.20
1.04 ± 0.28

0.13 ± 0.03
0.69 ± 0.15
0.65 ± 0.17

0.04 ± 0.01
0.27 ± 0.06
0.16 ± 0.04

0.68 ± 0.34
1.27 ± 0.36
1.40 ± 0.48

0.46 ± 0.23
1.47 ± 1.41
1.61 ± 1.40

0.31 ± 0.18
0.55 ± 0.16
0.66 ± 0.20

Remark: b2b is batch-to-batch variation and noise is the process noise.
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Medium Full Exchange Decision Making
Background: Medium exchange is an essential element of successful long-term cell culture.
Culture medium is exchanged to supply new nutrients and to eliminate waste products produced
by the cells.

Goal: finding the optimal time to fully exchange the medium with fresh medium.

State: is defined as cell density and inhibitor ssst = (ρt , It).

Action: at = 0 denoting the full exchange of medium at step t; at = 1, otherwise. It = at It
represent the post-exchanged concentration of inhibitor

Reward:

Total operational cost: C(T ,M) = CtT + CmM,

Reward function is defined by cell yield per cost — the efficiency of the system during
the T hours (H time steps) cell culture (Glen et al., 2018):

rt = 0 with 0 ≤ t ≤ H

rH+1(sssH+1, aH+1 = “Harvest”) =
M(ρT − ρ0)

C(T ,M)

where ρT represents the cell density at the T -th hour.

Decision Epochs: The medium is fully exchanged up to one time in decision hours
{0, 3, . . . , 27}.
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Medium Exchange Cost Efficiency

Performance of hybrid-RL and LS-ODE in 30 macro-replications.

The validated models are used to optimize the media exchange time for cells to be
produced with optimal cost efficiency at a given production scale (100L).

The number of cells produced per dollar (y-axis) for a given time point (x-axis) of media
exchange are calculated for $150/hr operating time cost and $10/L of consumable cost
per medium exchange.
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Cell Culture Expansion Scheduling
Each expansion, the original batch is scaled up to a n times larger cell culture vessel
filling with fresh medium.
Cell density ρ and the concentration of inhibitor I decrease to 1/n of original batch
immediately after each scale-up.
The reward function is then defined by the difference between revenue and cost as,

rt = 0 with 0 ≤ t ≤ H

rH+1(sssH+1, aH+1 = “Harvest”)

= K(ρT , ξ, n)− C(T ,M)

where the revenue K(ρT , ξ, n) = Pc × ρT × nξ

Noise Level Hybrid-RL LS-ODE

b2b noise m = 3 m = 6 m = 20 m = 3 m = 6 m = 20

high σn = 0.01
7317.24
(352.37)

7588.15
(322.53)

7892.84
(69.65)

5677.62
(389.24)

5944.25
(403.52)

6030.83
(399.61)

high σn = 0.03
6888.86
(693.07)

7266.23
(393.66)

7689.45
(143.11)

-2259.01
(704.82)

1026.60
(484.50)

2454.22
(262.15)

low σn = 0.01
7800.60
(151.01)

7955.38
(75.78)

8035.71
(52.48)

6115.31
(413.23)

6193.70
(381.83)

6417.39
(389.06)

low σn = 0.03
7414.34
(334.41)

7572.99
(329.62)

7974.35
(76.15)

5978.52
(389.96)

6126.60
(393.61)

6225.02
(395.50)
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Thank you!
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