Variance Reduced Experience Replay for Policy Optimization with Partial Trajectory Reuse

Hua Zheng¹ Wei Xie¹

¹Department of Mechanical and Industrial Engineering Northeastern University

H. Zheng, W. Xie (POMS 2022)

• RL is known for its sample inefficiency:

æ

イロト イヨト イヨト イヨト

- RL is known for its sample inefficiency:
 - "learning from limited interaction remains a key challenge" (Schwarzer et al. 2020)

э

- RL is known for its sample inefficiency:
 - "learning from limited interaction remains a key challenge" (Schwarzer et al. 2020)
 - "Learning on the real system from limited samples" is listed as one of 7 major challenge (Dulac-Arnold et al., 2021)

- RL is known for its sample inefficiency:
 - "learning from limited interaction remains a key challenge" (Schwarzer et al. 2020)
 - "Learning on the real system from limited samples" is listed as one of 7 major challenge (Dulac-Arnold et al., 2021)
- "On-policy learning, in simplest form, discard incoming data immediately, after a single update." (Schaul et al., 2015)

- RL is known for its sample inefficiency:
 - "learning from limited interaction remains a key challenge" (Schwarzer et al. 2020)
 - "Learning on the real system from limited samples" is listed as one of 7 major challenge (Dulac-Arnold et al., 2021)
- "On-policy learning, in simplest form, discard incoming data immediately, after a single update." (Schaul et al., 2015)
 - strongly correlated updates breaks the i.i.d. assumption of SGD

- RL is known for its sample inefficiency:
 - "learning from limited interaction remains a key challenge" (Schwarzer et al. 2020)
 - "Learning on the real system from limited samples" is listed as one of 7 major challenge (Dulac-Arnold et al., 2021)
- "On-policy learning, in simplest form, discard incoming data immediately, after a single update." (Schaul et al., 2015)
 - strongly correlated updates breaks the i.i.d. assumption of SGD
 - the rapid forgetting of possibly rare experiences.

- RL is known for its sample inefficiency:
 - "learning from limited interaction remains a key challenge" (Schwarzer et al. 2020)
 - "Learning on the real system from limited samples" is listed as one of 7 major challenge (Dulac-Arnold et al., 2021)
- "On-policy learning, in simplest form, discard incoming data immediately, after a single update." (Schaul et al., 2015)
 - strongly correlated updates breaks the i.i.d. assumption of SGD
 - the rapid forgetting of possibly rare experiences.
 - Idea: experience replay (reusing historical samples) and off-policy learning.

- RL is known for its sample inefficiency:
 - "learning from limited interaction remains a key challenge" (Schwarzer et al. 2020)
 - "Learning on the real system from limited samples" is listed as one of 7 major challenge (Dulac-Arnold et al., 2021)
- "On-policy learning, in simplest form, discard incoming data immediately, after a single update." (Schaul et al., 2015)
 - strongly correlated updates breaks the i.i.d. assumption of SGD
 - the rapid forgetting of possibly rare experiences.
 - Idea: experience replay (reusing historical samples) and off-policy learning.
 - What is the problem?

- RL is known for its sample inefficiency:
 - "learning from limited interaction remains a key challenge" (Schwarzer et al. 2020)
 - "Learning on the real system from limited samples" is listed as one of 7 major challenge (Dulac-Arnold et al., 2021)
- "On-policy learning, in simplest form, discard incoming data immediately, after a single update." (Schaul et al., 2015)
 - strongly correlated updates breaks the i.i.d. assumption of SGD
 - the rapid forgetting of possibly rare experiences.
 - Idea: experience replay (reusing historical samples) and off-policy learning.
 - What is the problem?
 - how to avoid high variance in the policy gradient (Metelli et al., 2020; Schlegel et al., 2019; Zheng et al., 2021)
 - "how prioritizing which transitions are replayed" (Schaul et al., 2015)

< □ > < □ > < □ > < □ > < □ > < □ >

Problem of IS: The importance weights (or likelihood ratios) are

• the products of policy ratios for all transitions within a trajectory (Metelli et al., 2020; Zheng et al., 2021).

Problem of IS: The importance weights (or likelihood ratios) are

- the products of policy ratios for all transitions within a trajectory (Metelli et al., 2020; Zheng et al., 2021).
- can have **high** or even **infinite** variance. (Andradóttir et al., 1995; Schlegel et al., 2019)

Problem of IS: The importance weights (or likelihood ratios) are

- the products of policy ratios for all transitions within a trajectory (Metelli et al., 2020; Zheng et al., 2021).
- can have **high** or even **infinite** variance. (Andradóttir et al., 1995; Schlegel et al., 2019)
- As a result, importance sampling / likelihood ratio based policy gradient estimator inevitably suffers from high variance.

< ロ > < 同 > < 三 > < 三 > 、

Proposed Approach

Motivated by the problems discussed above, we invented a new experience replay technique called **variance reduced experience replay (VRER)** and investigated its applicability to step-based policy optimization. It

- prioritizes the transitions that can reduce policy gradient variance.
- automatically selects historical transitions based on a comparison of gradient variance between historical transitions and current transitions.
- has theoretically and empirically shown that the MLR based policy gradient estimator improves sample efficiency and has superior performance in convergence.

Review: Episode-based versus Step-based

- Episode-based approaches are also known as Monte Carlo approaches: REINFORCE (Williams, 1992)
- Step-based approaches (also known as per-decision approaches): trust region policy optimization (TRPO) (Schulman et al., 2015), proximal policy optimization (PPO) (Schulman et al., 2017)

イロト イポト イヨト イヨト

We formulate the problem of interest as infinite-horizon Markov decision process (MDP) specified by $(S, A, r, p, \mathbf{s}_1)$, where

- a transition dynamics distribution with conditional density $p(s_{t+1}|s_t, a_t)$
- a reward function $r : S \times A \rightarrow \mathbb{R}$.

The system start at an initial state s_1 drawn from $p_1(s_1)$. At time t,

- the agent observes the state $\boldsymbol{s}_t \in S$ and takes an action $\boldsymbol{a}_t \in A$ from a parametric policy $\pi(\boldsymbol{s}_t | \boldsymbol{a}_t; \boldsymbol{\theta})$ with parameter $\boldsymbol{\theta} \in \mathbb{R}^d$
- receives a reward $r_t(\boldsymbol{s}_t, \boldsymbol{a}_t) \in \mathbb{R}$.

イロト イヨト イヨト ・

Problem Description: Infinite Horizon MDP

• **Return**: the total discounted reward from time-step *t* onwards. Defined as

$$r_t^{\gamma} = \sum_{t'=t}^{\infty} \gamma^{t'-t} r(\boldsymbol{s}_{t'}, \boldsymbol{a}_{t'})$$

where $\gamma \in (0, 1)$ denotes the discount factor.

Value Function: state value functions V^π(s) and the action function Q^π(s, a) are defined to be the expected total discounted reward-to-go,

$$V^{\pi}(\boldsymbol{s}) = \mathbb{E}[r_1^{\gamma} | \boldsymbol{s}_1 = \boldsymbol{s}; \pi] = \mathbb{E}\left[\left|\sum_{t=1}^{\infty} \gamma^{t-1} r(\boldsymbol{s}_t, \boldsymbol{a}_t)\right| \boldsymbol{s}_1 = \boldsymbol{s}; \pi\right]$$
(1)

$$Q^{\pi}(\boldsymbol{s},\boldsymbol{a}) = \mathbb{E}[\boldsymbol{r}_{1}^{\gamma}|\boldsymbol{s}_{1} = \boldsymbol{s}, \boldsymbol{a}_{1} = \boldsymbol{a}; \pi] = \mathbb{E}\left[\sum_{t=1}^{\infty} \gamma^{t-1} \boldsymbol{r}(\boldsymbol{s}_{t}, \boldsymbol{a}_{t}) \middle| \boldsymbol{s}_{1} = \boldsymbol{s}, \boldsymbol{a}_{1} = \boldsymbol{a}; \pi\right].$$
(2)

• Objective: $J(\theta) = \mathbb{E}_{\boldsymbol{s} \sim d^{\pi}(\boldsymbol{s}), \boldsymbol{a} \sim \pi_{\boldsymbol{\theta}}(\boldsymbol{a}|\boldsymbol{s})}[r(\boldsymbol{s}, \boldsymbol{a})],$

where $\mathbb{E}_{\pmb{s}\sim d^{\pi}(\pmb{s}),\pmb{a}\sim\pi(\pmb{a}|\pmb{s}))}[\cdot]$ denotes the expected value with respect to

- stationary state distribution $d^{\pi}(\mathbf{s}) = \int_{S} \sum_{t=1}^{\infty} \gamma^{t-1} p(\mathbf{s}_{1}) p(\mathbf{s}_{t} = \mathbf{s} | \mathbf{s}_{1}; \pi) d\mathbf{s}_{1}$
- policy distribution π_θ(a|s).

Problem Description: Policy Optimization

• Under some regularity conditions, *Policy Gradient Theorem* (Sutton et al., 1999) reformulates the policy gradient as

$$\nabla J(\boldsymbol{\theta}) = \mathbb{E}_{\boldsymbol{s} \sim d^{\pi}(\boldsymbol{s}), \boldsymbol{a} \sim \pi_{\boldsymbol{\theta}}(\boldsymbol{a}|\boldsymbol{s})} [\nabla \log \pi_{\boldsymbol{\theta}}(\boldsymbol{a}|\boldsymbol{s}) Q^{\pi}(\boldsymbol{s}, \boldsymbol{a})]$$
(3)

• A widely used variation of (3) is to subtract a state value function from the return to reduce the variance of gradient estimation while keeping the bias unchanged (Bhatnagar et al., 2009, Lemma 2):

$$\nabla J(\boldsymbol{\theta}) = \mathbb{E}_{\boldsymbol{s} \sim d^{\pi}(\boldsymbol{s}), \boldsymbol{a} \sim \pi_{\boldsymbol{\theta}}(\boldsymbol{a}|\boldsymbol{s})} [\nabla \log \pi_{\boldsymbol{\theta}}(\boldsymbol{a}|\boldsymbol{s}) A^{\pi}(\boldsymbol{s}, \boldsymbol{a}))]$$
(4)

The difference $A^{\pi}(\boldsymbol{s}, \boldsymbol{a}) = Q^{\pi}(\boldsymbol{s}, \boldsymbol{a}) - V^{\pi}(\boldsymbol{s})$ is called advantage.

• The advantage function can be also expressed

$$\mathcal{A}^{\pi}(\boldsymbol{s},\boldsymbol{a}) = r(\boldsymbol{s},\boldsymbol{a}) + \gamma \mathbb{E}_{\boldsymbol{s}' \sim p(\boldsymbol{s}'|\boldsymbol{s},\boldsymbol{a})}[V^{\pi}(\boldsymbol{s}')] - V^{\pi}(\boldsymbol{s}).$$
(5)

It can be estimated by the temporal difference (TD) error

$$\delta(\boldsymbol{s}, \boldsymbol{a}, \boldsymbol{s}') = r(\boldsymbol{s}, \boldsymbol{a}) + \gamma \hat{V}(\boldsymbol{s}') - \hat{V}(\boldsymbol{s})$$
(6)

is an unbiased estimate of $A^{\pi}(\mathbf{s}, \mathbf{a})$ (Bhatnagar et al., 2009, Lemma 3). Here, $\hat{V}(\mathbf{s})$ is an unbiased estimate of value function at state \mathbf{s} .

Individual/Mixture Likelihood Ratio (ILR/MLR)

Let stationary probabilities of state-action pair to be $\rho_{\theta}(\mathbf{s}, \mathbf{a}) = \pi_{\theta}(\mathbf{a}|\mathbf{s})d^{\pi}(\mathbf{s})$.

Individual Likelihood Ratio / Importance Sampling:

unbiased estimator of policy gradient

$$\nabla J(\boldsymbol{\theta}) = \mathbb{E}_{\rho_{\boldsymbol{\theta}_{i}}}\left[\frac{\rho_{\boldsymbol{\theta}_{k}}(\boldsymbol{s},\boldsymbol{a})}{\rho_{\boldsymbol{\theta}_{i}}(\boldsymbol{s},\boldsymbol{a})}\nabla \log \pi_{\boldsymbol{\theta}_{k}}A^{\pi}(\boldsymbol{s},\boldsymbol{a})(\boldsymbol{a}|\boldsymbol{s})\right]$$
(7)

 Another off-policy policy gradient estimator simplifies the likelihood ratio term by introducing bias (Degris et al., 2012):

$$\nabla J(\boldsymbol{\theta}) \approx \mathbb{E}_{\rho_{\boldsymbol{\theta}_{i}}} \left[\frac{\pi_{\boldsymbol{\theta}_{k}}}{\pi_{\boldsymbol{\theta}_{i}}} \nabla \log \pi_{\boldsymbol{\theta}_{k}}(\boldsymbol{a}|\boldsymbol{s}) A^{\pi}(\boldsymbol{s}, \boldsymbol{a}) \right]$$
(8)

Mixture Likelihood Ratio / Multiple Importance Sampling:

• MLR based policy gradient can be obtained by replacing $\frac{\rho_{\boldsymbol{\theta}_k}(\boldsymbol{s},\boldsymbol{a})}{\rho_{\boldsymbol{\theta}_i}(\boldsymbol{s},\boldsymbol{a}_t)}$ or $\frac{\pi_{\boldsymbol{\theta}_k}}{\pi_{\boldsymbol{\theta}_i}}$ with $\frac{1}{|U_k|}\sum_{i\in U_k} \rho_{\boldsymbol{\theta}_i}(\boldsymbol{s}_t,\boldsymbol{a}_t)$ or $=\frac{\pi_{\boldsymbol{\theta}_k}(\boldsymbol{s}_t,\boldsymbol{a}_t)}{\frac{1}{|U_k|}\sum_{i\in U_k} \pi_{\boldsymbol{\theta}_i}(\boldsymbol{s}_t,\boldsymbol{a}_t)}$, where U_k is the reuse set.

• Similar result for episode-based approaches: Metelli et al. (2020); Zheng et al. (2021).

• lower variance than individual likelihood ratio (LR) estimator and still unbiased.

э

To estimate the MLR policy gradient, we need to model the value function $V^{\pi}(s)$ and policy function $\pi_{\theta}(a|s)$ using actor-critic method:

- a widely used architecture based on the policy gradient theorem.
- Actor corresponds to a action-selection policy $\pi_{\theta}(a|s)$
- Critic: corresponds to a parametric value function $V_w(s)$

Following (Bhatnagar et al., 2009; Konda and Tsitsiklis, 2003), a typical actor-critic update can be written as

TD Error:
$$\delta_k = r_t + \gamma V_{\boldsymbol{w}_k}(\boldsymbol{s}') - V_{\boldsymbol{w}_k}(\boldsymbol{s})$$
 (9)

Critic:
$$\boldsymbol{w}_{k+1} = \boldsymbol{w}_k + \eta_w \delta_k \nabla_w V_{\boldsymbol{w}_k}(\boldsymbol{s})$$
 (10)

Actor:
$$\boldsymbol{\theta}_{k+1} = \boldsymbol{\theta}_k + \eta_{\theta} \nabla J(\boldsymbol{\theta})$$
 (11)

イロト 不得 ト イヨト イヨト

where η_w and η_{θ} represent learning rates for critic and actor respectively. The policy gradient $\nabla J(\boldsymbol{\theta})$ is estimated by MLR policy gradient estimate (the previous slide).

Theorem (Selection Rule)

At the kth iteration where the target distribution is ρ_k , the reuse set U_k includes stationary distributions at ith iteration i.e., ρ_i with $(\boldsymbol{\theta}_i, \boldsymbol{w}_i)$, whose ILR policy gradient estimator's total variance is no greater than c times the total variance of the vanilla PG estimator for some constant c > 1. Mathematically,

$$Tr\left(\operatorname{Var}\left[\left.\widehat{\nabla \mu}_{i,k}^{ILR}\right|M_{k}\right]\right) \leq c\,Tr\left(\operatorname{Var}\left[\left.\widehat{\nabla \mu}_{k}^{PG}\right|M_{k}\right]\right).$$
(12)

Then, based on such reuse set U_k , the total variance of the MLR policy gradient estimator is no greater than $\frac{c}{|U_k|}$ times the total variance of vannila PG estimator,

$$Tr\left(\operatorname{Var}\left[\left.\widehat{\nabla\mu}_{k}^{MLR}\right|M_{k}\right]\right) \leq \frac{c}{|U_{k}|}Tr\left(\operatorname{Var}\left[\left.\widehat{\nabla\mu}_{k}^{PG}\right|M_{k}\right]\right).$$
(13)

Remark: $\widehat{\nabla \mu}_{k}^{PG}$, $\widehat{\nabla \mu}_{i,k}^{ILR}$ and $\widehat{\nabla \mu}_{k}^{MLR}$ are sample average approximation of vanilla policy gradient, individual likelihood ratio and mixture likelihood ratio based policy gradient respectively.

イロト イヨト イヨト ・

Algorithm

Input: the selection threshold constant c; the maximum number of iterations K; the number of iterations in offline optimization K_{off} ; the number of replications per iteration n_k ;

Initialize actor parameter $\boldsymbol{\theta}_1$ and critic parameter \boldsymbol{w}_1 . Store them in $M_1 = M_0 \cup \{\boldsymbol{\theta}_1, \boldsymbol{w}_1\}$; for $k = 1, 2, \ldots, K$ do

1. Collect transitions $\mathcal{T}_{k} = \{(\mathbf{s}_{t}, \mathbf{a}_{t}, \mathbf{s}_{t+1}, r_{t})\}_{t=1}^{n_{k}}$ from real system with $\pi_{\boldsymbol{\theta}_{k}}$; Update the sets $\mathcal{D}_{k} \leftarrow \mathcal{D}_{k-1} \cup \mathcal{T}_{k}$; 2. Initialize $U_{k} = \emptyset$, screen all historical transitions and associated policies in U_{k} , and construct the reuse set U_{k} ; for $(\boldsymbol{\theta}_{i}, \boldsymbol{w}_{i}) \in M_{k}$ (all models visited utill kth iteration) do (a) Compute and store the new likelihoods: $\mathcal{L}_{k} \leftarrow \mathcal{L}_{k-1} \cup \pi_{\boldsymbol{\theta}_{k}}(\mathcal{D}_{k}) \cup \pi_{\boldsymbol{\theta}_{[1:k]}}(\mathcal{T}_{k})$ (b) Compute $\operatorname{Tr}\left(\operatorname{Var}\left[\widehat{\nabla \mu_{i,k}^{ILR}} \middle| M_{k}\right]\right)$ and $\operatorname{Tr}\left(\operatorname{Var}\left[\widehat{\nabla \mu_{k}^{PG}} \middle| M_{k}\right]\right)$. if $Tr\left(\operatorname{Var}\left[\widehat{\nabla \mu_{i,k}^{ILR}} \middle| M_{k}\right]\right) \leq cTr\left(\operatorname{Var}\left[\widehat{\nabla \mu_{k}^{PG}} \middle| M_{k}\right]\right)$ then $U_{k} \leftarrow U_{k} \cup \{i\}$.

end

3. Reuse the historical samples associated with U_k and stored likelihoods \mathcal{L}_k to update actor and critic: (a) Let $\theta_k^0 = \theta_k$ and $\mathbf{w}_k^0 = \mathbf{w}_k$; for $h = 0, 1, ..., K_{off}$ do (b) TD Error: $\delta_k^h = r_t + \gamma V_{\mathbf{w}_k^h}(\mathbf{s}') - V_{\mathbf{w}_k^h}(\mathbf{s})$; (c) Actor Update: $\theta_k^{h+1} \leftarrow \theta_k^h + \eta_k \widehat{\nabla} \mu_k^{MLR}$; (d) Critic Update: $\mathbf{w}_k^{h+1} = \mathbf{w}_k^h + \eta_k \delta_k \nabla_w V_{\mathbf{w}_k^h}(\mathbf{s})$;

end

4. Update the actor and critic:
$$\boldsymbol{\theta}_{k+1} = \boldsymbol{\theta}_k^{\text{Koff}}$$
 and $\boldsymbol{w}_{k+1} = \boldsymbol{w}_k^{\text{Koff}}$;
5. Store them to the set $M_{k+1} = M_k \cup \{(\boldsymbol{\theta}_{k+1}, \boldsymbol{w}_{k+1})\}$;

end

э

イロト イポト イヨト イヨト

Empirical Study

In the empirical study, we present the experimental evaluation of VRER in combination with actor critic algorithm (Bhatnagar et al., 2009) and proximal policy optimization (PPO) algorithm (Schulman et al., 2017).

- **Software**: For both actor critic and PPO implementation, we use two open-sourced libraries, Keras and TensorFlow for modeling and automatic differentiation;
- **Control Examples**: (1) *Cartpole* and (2) *Acrobot* control problem from OpenAl gym Brockman et al. (2016).
- Model structure: Actor-Critic model is composed of a shared initial layer with 128 neurons and separate outputs for the actor and critic. **PPO** algorithm has separate actor and critic neural network models, both of which have two layers with 64 neurons.
 - For the problems with discrete action, we use softmax policy for actor network.
 - For the fermentation problem with a continuous action (feeding rate of substrate), we use the Gaussian policy for actor model.

Github repository: https://github.com/zhenghuazx/vrer_policy_optimization

Benchmarks

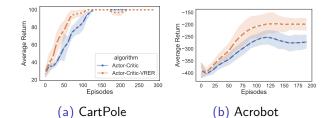


Figure: Convergence results for the Actor-Critic algorithm.

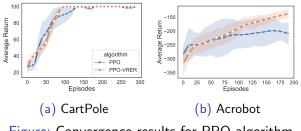
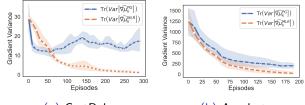


Figure: Convergence results for PPO algorithm.

H. Zheng, W. Xie (POMS 2022)

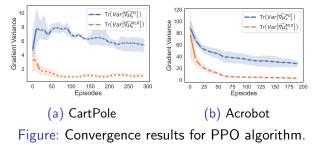
Result: Lower Variance in Policy Gradient



(a) CartPole

(b) Acrobot

Figure: Convergence results for the Actor-Critic algorithm.



H. Zheng, W. Xie (POMS 2022)

Result: Sensitivity Analysis on c

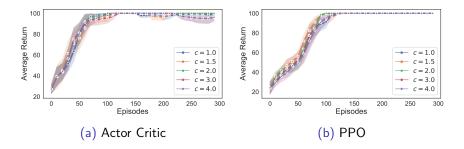


Figure: Sensitivity analysis of selection threshold constant *c* in Cartpole example.

- Develop VRER to select transitions based on variance reduction;
- Apply mixture likelihood ratio to reduce the variance of off-policy policy gradient;
- Study the applicability of VRER to various actor-critic methods.

Thank you!

æ

イロト イヨト イヨト イヨト

- Sigrún Andradóttir, Daniel P Heyman, and Teunis J Ott. On the choice of alternative measures in importance sampling with markov chains. Operations research, 43(3):509–519, 1995.
- Shalabh Bhatnagar, Richard S Sutton, Mohammad Ghavamzadeh, and Mark Lee. Natural actor-critic algorithms. Automatica, 45(11):2471–2482, 2009.
- Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and Wojciech Zaremba. Openai gym. 2016.
- Thomas Degris, Martha White, and Richard S. Sutton. Off-policy actor-critic. In Proceedings of the 29th International Coference on International Conference on Machine Learning, ICML'12, page 179–186, Madison, WI, USA, 2012. Omnipress. ISBN 9781450312851.
- Gabriel Dulac-Arnold, Nir Levine, Daniel J. Mankowitz, Jerry Li, Cosmin Paduraru, Sven Gowal, and Todd Hester. Challenges of real-world reinforcement learning: Definitions, benchmarks and analysis. Mach. Learn., 110(9):2419–2468, sep 2021. ISSN 0885-6125. doi: 10.1007/s10994-021-05961-4. URL https://doi.org/10.1007/s10994-021-05961-4.
- Vijay R Konda and John N Tsitsiklis. On actor-critic algorithms. SIAM journal on Control and Optimization, 42(4):1143–1166, 2003.
- Alberto Maria Metelli, Matteo Papini, Nico Montali, and Marcello Restelli. Importance sampling techniques for policy optimization. J. Mach. Learn. Res., 21:141–1, 2020.
- Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experience replay. arXiv preprint arXiv:1511.05952, 2015.
- Matthew Schlegel, Wesley Chung, Daniel Graves, Jian Qian, and Martha White. Importance resampling for off-policy prediction. Advances in Neural Information Processing Systems, 32, 2019.
- John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region policy optimization. In International conference on machine learning, pages 1889–1897. PMLR, 2015.
- John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.
- Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradient methods for reinforcement learning with function approximation. Advances in neural information processing systems, 12, 1999.
- Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement learning. Machine learning, 8 (3):229–256, 1992.
- Hua Zheng, Wei Xie, and M Ben Feng. Green simulation assisted policy gradient to accelerate stochastic process control. arXiv preprint arXiv:2110.08902, 2021.