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Motivation

RL is known for its sample inefficiency:

“learning from limited interaction remains a key challenge”
(Schwarzer et al. 2020)
“Learning on the real system from limited samples” is listed as one of
7 major challenge (Dulac-Arnold et al., 2021)

“On-policy learning, in simplest form, discard incoming data immediately,

after a single update.” (Schaul et al., 2015)

strongly correlated updates breaks the i.i.d. assumption of SGD
the rapid forgetting of possibly rare experiences.
Idea: experience replay (reusing historical samples) and off-policy
learning.
What is the problem?

how to avoid high variance in the policy gradient (Metelli et al.,
2020; Schlegel et al., 2019; Zheng et al., 2021)
“how prioritizing which transitions are replayed” (Schaul et al.,
2015)
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Inflated Variance in Off-policy Policy Optimization

To reuse the historical samples, RL needs to perform the importance
sampling (IS) on full trajectories to adjust the distributional
mismatch between the target and sampling/behavior policies.

Problem of IS: The importance weights (or likelihood ratios) are

the products of policy ratios for all transitions within a trajectory
(Metelli et al., 2020; Zheng et al., 2021).

can have high or even infinite variance. (Andradóttir et al.,
1995; Schlegel et al., 2019)

As a result, importance sampling / likelihood ratio based policy
gradient estimator inevitably suffers from high variance.
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Proposed Approach

Motivated by the problems discussed above, we invented a new experience replay
technique called variance reduced experience replay (VRER) and investigated
its applicability to step–based policy optimization. It

prioritizes the transitions that can reduce policy gradient variance.

automatically selects historical transitions based on a comparison of
gradient variance between historical transitions and current transitions.

has theoretically and empirically shown that the MLR based policy gradient
estimator improves sample efficiency and has superior performance in
convergence.

Review: Episode–based versus Step–based

Episode–based approaches are also known as Monte Carlo approaches: REINFORCE
(Williams, 1992)

Step–based approaches (also known as per-decision approaches): trust region policy
optimization (TRPO) (Schulman et al., 2015), proximal policy optimization (PPO)
(Schulman et al., 2017)
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Problem Description: Infinite Horizon MDP

We formulate the problem of interest as infinite-horizon Markov decision process
(MDP) specified by (S,A, r , p, sss1), where

a transition dynamics distribution with conditional density p(ssst+1|ssst ,aaat)

a reward function r : S ×A → R.

The system start at an initial state sss1 drawn from p1(sss1). At time t,

the agent observes the state ssst ∈ S and takes an action aaat ∈ A from a
parametric policy π(ssst |aaat ;θθθ) with parameter θθθ ∈ Rd

receives a reward rt(ssst ,aaat) ∈ R.
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Problem Description: Infinite Horizon MDP

Return: the total discounted reward from time-step t onwards. Defined as

rγt =
∞∑
t′=t

γt′−tr(ssst′ ,aaat′)

where γ ∈ (0, 1) denotes the discount factor.

Value Function: state value functions V π(sss) and the action function
Qπ(sss,aaa) are defined to be the expected total discounted reward-to-go,

Vπ(sss) = E[rγ1 |sss1 = sss;π] = E

[ ∞∑
t=1

γt−1r(ssst ,aaat)

∣∣∣∣∣ sss1 = sss;π

]
(1)

Qπ(sss,aaa) = E[rγ1 |sss1 = sss,aaa1 = aaa;π] = E

[ ∞∑
t=1

γt−1r(ssst ,aaat)

∣∣∣∣∣ sss1 = sss,aaa1 = aaa;π

]
. (2)

Objective: J(θθθ) = Esss∼dπ(sss),aaa∼πθθθ(aaa|sss)[r(sss,aaa)],

where Esss∼dπ(sss),aaa∼π(aaa|sss))[·] denotes the expected value with respect to

stationary state distribution dπ(sss) =
∫
S
∑∞

t=1 γ
t−1p(sss1)p(ssst = sss|sss1;π)dsss1

policy distribution πθθθ(aaa|sss).
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Problem Description: Policy Optimization

Under some regularity conditions, Policy Gradient Theorem (Sutton et al.,
1999) reformulates the policy gradient as

∇J(θθθ) = Esss∼dπ(sss),aaa∼πθθθ(aaa|sss)[∇ log πθθθ(aaa|sss)Qπ(sss,aaa)] (3)

A widely used variation of (3) is to subtract a state value function from the
return to reduce the variance of gradient estimation while keeping the bias
unchanged (Bhatnagar et al., 2009, Lemma 2):

∇J(θθθ) = Esss∼dπ(sss),aaa∼πθθθ(aaa|sss)[∇ log πθθθ(aaa|sss)Aπ(sss,aaa))] (4)

The difference Aπ(sss,aaa) = Qπ(sss,aaa)− V π(sss) is called advantage.

The advantage function can be also expressed

Aπ(sss,aaa) = r(sss,aaa) + γ Esss′∼p(sss′|sss,aaa)[V
π(sss ′)]− V π(sss). (5)

It can be estimated by the temporal difference (TD) error

δ(sss,aaa, sss ′) = r(sss,aaa) + γV̂ (sss ′)− V̂ (sss) (6)

is an unbiased estimate of Aπ(sss,aaa) (Bhatnagar et al., 2009, Lemma 3).
Here, V̂ (sss) is an unbiased estimate of value function at state sss.
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Individual/Mixture Likelihood Ratio (ILR/MLR)

Let stationary probabilities of state-action pair to be ρθ(sss,aaa) = πθ(aaa|sss)dπ(sss).

Individual Likelihood Ratio / Importance Sampling:

unbiased estimator of policy gradient

∇J(θθθ) = Eρθθθi

[
ρθθθk

(sss,aaa)

ρθθθi
(sss,aaa)

∇ log πθθθkA
π(sss,aaa) (aaa |sss )

]
(7)

Another off-policy policy gradient estimator simplifies the likelihood ratio term by
introducing bias (Degris et al., 2012):

∇J(θθθ) ≈ Eρθθθi

[
πθθθk
πθθθi

∇ log πθθθk (aaa|sss)A
π(sss,aaa)

]
(8)

Mixture Likelihood Ratio / Multiple Importance Sampling:

MLR based policy gradient can be obtained by replacing
ρθθθk

(sss,aaa)

ρθθθi
(sss,aaa)

or
πθθθk
πθθθi

with

ρθθθk
(ssst ,aaat )

1
|Uk |

∑
i∈Uk

ρθθθi
(ssst ,aaat )

or =
πθθθk

(ssst ,aaat )

1
|Uk |

∑
i∈Uk

πθθθi
(ssst ,aaat )

, where Uk is the reuse set.

Similar result for episode-based approaches: Metelli et al. (2020); Zheng et al. (2021).

lower variance than individual likelihood ratio (LR) estimator and still unbiased.
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Actor-Critic Method

To estimate the MLR policy gradient, we need to model the value function V π(sss)
and policy function πθθθ(aaa|sss) using actor-critic method:

a widely used architecture based on the policy gradient theorem.

Actor corresponds to a action-selection policy πθθθ(aaa|sss)

Critic: corresponds to a parametric value function Vwww (sss)

Following (Bhatnagar et al., 2009; Konda and Tsitsiklis, 2003), a typical
actor-critic update can be written as

TD Error : δk = rt + γVwwwk
(sss ′)− Vwwwk

(sss) (9)

Critic : wwwk+1 = wwwk + ηwδk∇wVwwwk
(sss) (10)

Actor : θθθk+1 = θθθk + ηθ∇J(θθθ) (11)

where ηw and ηθ represent learning rates for critic and actor respectively. The
policy gradient ∇J(θθθ) is estimated by MLR policy gradient estimate (the previous
slide).
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Variance Reduced Experience Replay (VRER)

Theorem (Selection Rule)

At the kth iteration where the target distribution is ρk , the reuse set Uk includes stationary
distributions at ith iteration i.e., ρi with (θθθi ,www i ), whose ILR policy gradient estimator’s total
variance is no greater than c times the total variance of the vanilla PG estimator for some
constant c > 1. Mathematically,

Tr
(
Var

[
∇̂µ

ILR

i,k

∣∣∣Mk

])
≤ cTr

(
Var

[
∇̂µ

PG

k

∣∣∣Mk

])
. (12)

Then, based on such reuse set Uk , the total variance of the MLR policy gradient estimator is no
greater than c

|Uk |
times the total variance of vannila PG estimator,

Tr
(
Var

[
∇̂µ

MLR

k

∣∣∣Mk

])
≤

c

|Uk |
Tr

(
Var

[
∇̂µ

PG

k

∣∣∣Mk

])
. (13)

Remark: ∇̂µ
PG

k , ∇̂µ
ILR

i,k and ∇̂µ
MLR

k are sample average approximation of vanilla policy gradient,
individual likelihood ratio and mixture likelihood ratio based policy gradient respectively.
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Algorithm

Input: the selection threshold constant c; the maximum number of iterations K ; the number of iterations in offline
optimization Koff ; the number of replications per iteration nk ;

Initialize actor parameter θθθ1 and critic parameter www1. Store them in M1 = M0 ∪ {θθθ1,www1};
for k = 1, 2, . . . ,K do

1. Collect transitions Tk = {(ssst , aaat , ssst+1, rt )}
nk
t=1 from real system with πππθθθk

; Update the sets Dk ← Dk−1 ∪ Tk ;
2. Initialize Uk = ∅, screen all historical transitions and associated policies in Uk , and construct the reuse set Uk ;
for (θθθi ,www i ) ∈ Mk (all models visited utill kth iteration) do

(a) Compute and store the new likelihoods: Lk ← Lk−1 ∪ πθθθk
(Dk ) ∪ πθθθ[1:k]

(Tk )

(b) Compute Tr
(
Var

[
∇̂µ

ILR
i,k

∣∣∣Mk

])
and Tr

(
Var

[
∇̂µ

PG
k

∣∣∣Mk

])
.

if Tr
(
Var

[
∇̂µ

ILR
i,k

∣∣∣Mk

])
≤ cTr

(
Var

[
∇̂µ

PG
k

∣∣∣Mk

])
then

Uk ← Uk ∪ {i}.
end

end
3. Reuse the historical samples associated with Uk and stored likelihoods Lk to update actor and critic:

(a) Let θθθ0k = θθθk and www0
k = wwwk ;

for h = 0, 1, ...,Koff do

(b) TD Error: δhk = rt + γV
wwwh
k
(sss′)− V

wwwh
k
(sss);

(c) Actor Update: θθθh+1
k
← θθθhk + ηk∇̂µ

MLR
k ;

(d) Critic Update: wwwh+1
k

= wwwh
k + ηkδk∇wV

wwwh
k
(sss);

end

4. Update the actor and critic: θθθk+1 = θθθ
Koff
k

and wwwk+1 = www
Koff
k

;

5. Store them to the set Mk+1 = Mk ∪
{
(θθθk+1,wwwk+1)

}
;

end
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Empirical Study

In the empirical study, we present the experimental evaluation of VRER in
combination with actor critic algorithm (Bhatnagar et al., 2009) and proximal
policy optimization (PPO) algorithm (Schulman et al., 2017).

Software: For both actor critic and PPO implementation, we use two
open-sourced libraries, Keras and TensorFlow for modeling and automatic
differentiation;

Control Examples: (1) Cartpole and (2) Acrobot control problem from
OpenAI gym Brockman et al. (2016).

Model structure: Actor-Critic model is composed of a shared initial layer

with 128 neurons and separate outputs for the actor and critic. PPO

algorithm has separate actor and critic neural network models, both of

which have two layers with 64 neurons.

For the problems with discrete action, we use softmax policy for actor network.
For the fermentation problem with a continuous action (feeding rate of substrate),
we use the Gaussian policy for actor model.

Github repository: https://github.com/zhenghuazx/vrer_policy_optimization
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Figure: Convergence results for the Actor-Critic algorithm.
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Figure: Convergence results for PPO algorithm.
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Result: Lower Variance in Policy Gradient
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Figure: Convergence results for PPO algorithm.
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Result: Sensitivity Analysis on c
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Figure: Sensitivity analysis of selection threshold constant c in Cartpole
example.
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Summary

Develop VRER to select transitions based on variance reduction;

Apply mixture likelihood ratio to reduce the variance of
off-policy policy gradient;

Study the applicability of VRER to various actor-critic methods.
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Thank you!
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